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a  b  s  t  r  a  c  t

This  paper  presents  a  global  uncertainty  and  sensitivity  analysis  (GUSA)  framework  based  on  global  sen-
sitivity analysis  (GSA)  and  generalized  likelihood  uncertainty  estimation  (GLUE)  methods.  Quasi-Monte
Carlo  (QMC)  is  employed  by  GUSA  to obtain  realizations  of  uncertain  parameters,  which  are  then  input
to  the  simulation  model  for analysis.  Compared  to GLUE,  GUSA  can  not  only  evaluate  global  sensitivity
and  uncertainty  of  modeling  parameter  sets,  but  also  quantify  the uncertainty  in  modeling  prediction
sets.  Moreover,  GUSA’s  another  advantage  lies  in  alleviation  of computational  effort,  since those  globally-
insensitive  parameters  can  be identified  and  removed  from  the  uncertain-parameter  set. GUSA  is applied
to  a practical  petroleum-contaminated  site in  Canada  to investigate  free  product  migration  and  recovery
processes  under  aquifer  remediation  operations.  Results  from  global  sensitivity  analysis  show  that  (1)
initial free  product  thickness  has  the  most  significant  impact  on  total  recovery  volume  but  least  impact
on  residual  free  product  thickness  and  recovery  rate;  (2) total  recovery  volume  and  recovery  rate  are
sensitive  to residual  LNAPL  phase  saturations  and  soil  porosity.  Results  from  uncertainty  predictions

reveal  that  the residual  thickness  would  remain  high  and  almost  unchanged  after  about  half-year  of
skimmer-well  scheme;  the  rather  high  residual  thickness  (0.73–1.56  m 20 years  later)  indicates  that  nat-
ural attenuation  would  not  be  suitable  for the  remediation.  The  largest  total  recovery  volume  would  be
from  water  pumping,  followed  by  vacuum  pumping,  and  then  skimmer.  The  recovery  rates  of  the  three
schemes  would  rapidly  decrease  after  2  years  (less  than 0.05  m3/day),  thus  short-term  remediation  is not

suggested.

. Introduction

Nonaqueous phase liquids (NAPLs) are among the most com-
on  type of pollutants in soils and groundwater. Their presence

an create a hazard to public health and the environment. One
f the widely-encountered sources of NAPLs is the spills involving
he release of petroleum products such as gasoline, diesel fuel and
ubricating and heating oil from underground leaking oil tanks and
ipelines. Light NAPLs (LNAPLs), existing as a type of free product in
he subsurface, can be recovered through skimmer (i.e., no pumping
s implemented), water pumping and vacuum pumping schemes
1–3]. Free product recovery has increasingly received attention in
he past years due to its economic and temporal efficiencies [3,4].

Studies have been conducted in modeling migration and recov-

ry of free product (LNAPLs) in unconfined aquifers [3,5,6].
aluarachchi and Parker [1] developed a numerical model named
RMOS to simulate free product migration and recovery in

∗ Corresponding author. Tel.: +86 10 61772980; fax: +86 10 61772960.
E-mail address: heliy111@gmail.com (L. He).

304-3894/$ – see front matter ©  2012 Elsevier B.V. All rights reserved.
ttp://dx.doi.org/10.1016/j.jhazmat.2012.03.067
© 2012 Elsevier B.V. All rights reserved.

unconfined aquifers. Based on the assumption of local vertical equi-
librium, the area flow equations for water and hydrocarbon can be
derived with reduced dimensionality and nonlinearity. The model
was also capable of simulating free phase hydrocarbons under con-
ditions involving hydrocarbon skimming with or without water
pumping. Kaluarachchi [3] investigated the effects of subsurface
heterogeneity on free-product recovery system designs using a ver-
tically integrated three-phase flow model. Results from a series of
hypothetical field-case simulation revealed that the effects were
enhanced at relatively low water-pumping rates, and the difference
in results produced by homogeneous and heterogeneous simula-
tions was  substantial.

Charbeneau et al. [7] proposed two simple models for predict-
ing free product recovery rates using wells and vacuum pumping
systems. The models incorporated vertical variations in LNAPL
saturation and relative permeability through the use of effective
LNAPL-layer values. Compared to ARMOS, the models were rather

simple but their applicability was unable to address multiple-well
pumping strategies. Li et al. [8] presented the simulation of a dual-
phase vacuum extraction process via a finite element multiphase
flow model. It was  observed that the model was  computationally

dx.doi.org/10.1016/j.jhazmat.2012.03.067
http://www.sciencedirect.com/science/journal/03043894
http://www.elsevier.com/locate/jhazmat
mailto:heliy111@gmail.com
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fficient due to the vertical integration of governing equations for
ater, oil, and gas flow. Yen and Chang [9] used a bioslurping

imulation model for predicting three-phase (water, oil, and gas)
ow and transport in groundwater and gas phase flow in the unsat-
rated zone. Through the model, one can gain insight into the
ecovery and migration of LNAPLs with vacuum enhanced recov-
ry and multispecies (dissolved in groundwater) and gas phases (in
nsaturated zone) transport in heterogeneous, anisotropic porous
edia.
The above mentioned efforts in free product recovery were pre-

ented as either analytical equations or two-dimensional numerical
odels. However, few of the studies considered the impacts of

arameter uncertainty on LNAPL migration and recovery processes
3]. Due to inevitable errors in modeling formulation, data obser-
ation and parameter estimations, model predictions could depart
rom the true values considerably [10–15].  Sensitivity analysis is an
ffective approach for analyzing effects of parameter variations on
emediation performance. However, it investigates the impacts by
reating the parameters as individual values rather than sets of val-
es [16]. Recently, generalized likelihood uncertainty estimation
GLUE) methods have been widely applied in for calibration and
ncertainty estimation of mathematical models [16–26].

However, GLUE does not consider individual or interactive influ-
nces of parameters on predictions. This probably leads to the
ncrease in computational effort since overmuch uncertain param-
ters need to be considered by GLUE. If global sensitivity analysis
GSA) is performed before GLUE, then those substantially sensitive
arameters can be screened out and input to GLUE procedures. Due
o the decrease of uncertainty parameters, the required realiza-
ions can be reduced. Moreover, GLUE generally employs regular

onte Carlo (MC) sampling with an assumption of uniformly-
istributed random parameters, while MC  cannot guarantee the
ampling data are generated with low discrepancy. This causes slow
onvergence rate in computation and probably in underestimation
f uncertainty predictions due to high possibility of missing part of
mportant parameter values in sampling. Much research has been
ndertaken in development and application of high-efficient sam-
ling rules such as Latin Hypercube (LH), Markov Chain Monte Carlo
MCMC), adaptive MCMC  [26], and quasi-Monte Carlo (QMC). Par-
icularly, QMC  has shown its superior advantages over regular MC
n generating low-frequency sampling data and high efficiency over
H [27].

Therefore, this paper aims to present a new global uncertainty
nd sensitivity analysis (GUSA) framework based on GSA and GLUE
ethods. Through GUSA, not only global sensitivity and uncertainty

f input parameters can be evaluated, but also uncertainty in mod-
ling predictions can be quantified. GUSA is applied to a practical
etroleum-contaminated site in Canada to investigate free prod-
ct migration and recovery processes under aquifer remediation
chemes.

. Materials and methods

.1. Aquifer overview

The aquifer to be investigated is located at the Cantuar site
n southwest Saskatchewan, Canada [33]. The existing site char-
cterization results showed that the stratigraphy at the aquifer
onsisted of native silt and silty clay extending from surface to
etween approximately 7.6 m and 12.5 m depth. Underlying silty
lay was clay matrix till extending to between 9.4 m and 15.2 m

epth. Sand was encountered with or underlying the clay matrix till
etween approximately 9.4 m and 15.2 m depth. Silty clay and sand
nderlying the top soil were over majority of the aquifer. Clay/till
nderlay the sand over the majority of the site, and extended to
Fig. 1. Flowchart of QMC-based GUSA.

the maximum exploration depth of 14.0 m.  Groundwater table was
measured between approximately 4.8 m and 13.2 m below ground
surface, predominantly located in the clay tills. The groundwater
flow direction was  from southeast toward northwest with a gradi-
ent of approximately 0.1 m/m.

Free phase hydrocarbons (i.e., free product) have infiltrated
through fractures near an underground storage tank ever buried
into the subsurface. The hydrocarbons migrated along saturated
fissures in the clay vertically toward the groundwater table, and
finally piled up at the groundwater surface. Fig. S3 in the Supple-
mentary data shows the monitoring well locations and estimated
contamination plume of the aquifer. During the 25-April-2000
monitoring program, free product was  detected in monitoring wells
BH101 (725 mm),  BH103 (1773 mm), BH105 (545 mm),  BH106
(201 mm),  BH108 (176 mm),  BH110 (398 mm), BH111 (250 mm),
BH201 (453 mm), BH202 (192 mm)  and BH401 (262 mm)  located
across the site. Fig. S4 in the Supplementary data presents the free
product thickness on 25th May, 2000 at the site, which indicated
that the peak free phase hydrocarbon thickness was approximately
in the range of 1.8–2.5 m.  The GUSA framework was applied to this
aquifer to evaluate performance of three potential aquifer reme-
diation schemes. Note that this section, only residual free product
thickness, total recovery volume and recovery rate were examined
at well BH401 under three 20-year remediation schemes: skim-
mer, water pumping (1 m3/hr), and vacuum pumping (−4 m water
column).

2.2. Global uncertainty and sensitivity analysis

The QMC-based GUSA framework is shown in Fig. 1. In terms of
the figure, a mathematical simulation model is selected for cap-
turing the free product migration and recovery processes in an
unconfined aquifer. The model can be used to predict the free
product migration and recovery processes under pumping-based
remediation schemes. The following gives the volume balance
equations for water, NAPL and air phases in the unsaturated and
saturated zones [2,3,28]:

∂Vw

∂t
= ∂

∂xi

(
Twij

∂Zaw

∂xj

)
+ Rwı(xi − x∗

i )ı(xj − x∗
j ) (1)
∂Vo

∂t
= ∂

∂xi

(
Toij

∂Zao

∂xj

)
+ Roı(xi − x∗

i )ı(xj − x∗
j ) (2)
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∂Va

∂t
= ∂

∂xi

(
Taij

∂Zaa

∂xj

)
+ Raı(xi − x∗

i )ı(xj − x∗
j ) (3)

here Vw, Vo, and Va are specific volume of water, NAPL, and gas,
espectively [L]; Twij, Toij, and Taij are transmissivity of water, NAPL,
nd gas, respectively [L2 T−1]; Zaw is air-water table elevation [L],
here water pressure is zero; Zao is air-NAPL table elevation [L],
here NAPL pressure is zero; Zaa is gas pressure [L]; Rw, Ro, and Ra

re pumping rates of water, NAPL, and gas, respectively [L3 L−2 T−1];
 is the Dirac delta function; xi and xj are Cartesian coordinates, rep-
esenting the horizontal and lateral direction, respectively; (x∗

i
, x∗

j
)

s the location of the pumping well; t is time [T]. The specific volume
f water, NAPL, and gas can be expressed as follows:

w =
∫ Zu

ZL

�Swdz (4)

o =
∫ Zu

ZL

�Sodz (5)

a =
∫ Zs

Pao

�Sadz (6)

wij =
∫ Zu

ZL

krwKswijdz (7)

oij =
∫ Zu

ZL

kowKsoijdz (8)

aij =
∫ Zs

Pao

kraKsaijdz (9)

soij = �roKswij

nro
(10)

saij = �raKswij

nra
(11)

here � is porosity; krw, ksw, and ksw are relative permeability of
hase water, NAPL, and air, respectively; Kswij, Ksoij, and Ksaij are
aturated hydraulic conductivity tensor of phase water, NAPL, and
ir, respectively [L T−1]; �ro and �ra are specific gravity of NAPL
nd air phase, respectively; nro is ratio of NAPL to water dynamic
iscosity; nra is ratio of air to water dynamic viscosity; Zu and ZL are
pper and lower limits of integration for water and NAPL phases
L], respectively; Zs is ground surface elevation [L]; Pao is elevation
f air-NAPL interface [L]; z is vertical coordinate [L]; Sw, So, and Sa

re water, NAPL, and air phase saturation, respectively, which can
e solved by [1,28]:

∂(�Sw�w)
∂t

= ∂[�wkrwKswij(∂hw/∂xj + �rwuj)]
∂xi

(12)

∂(�So�o)
∂t

= ∂[�okroKsoij(∂ho/∂xj + �rouj)]
∂xi

(13)

∂(�Sa�a)
∂t

= ∂[�akraKsaij(∂ha/∂xj + �rauj)]
∂xi

(14)

w + So + Sa = 1 (15)

here hw, ho, and ha are density of water, NAPL and air phase,
espectively [L]; �rw is specific gravity of water; �w, �o, and �a are
ensity of water, NAPL and air phase, respectively [M L−3]; uj is unit
ravitational vector measured positive upwards (uj = ∂z/∂xj, where

 is elevation). In addition to equations (1)–(15),  many other consti-

utive equations, initial conditions and boundary conditions should
e identified. More details regarding the modeling formulation
nd solution are shown in Fig. S1 and Section S1 in the Supple-
entary data. Output variables from the above equations include
erials 219– 220 (2012) 133– 140 135

specific volume, saturation and thickness of the water, NAPL, and
gas phases.

Considering the uncertainty in parameters (either stochastic-
or interval-valued), QMC  sampling technique can be employed to
obtain a number of realizations of uncertain parameter sets, with
each one comprised of all uncertain parameters whose global sen-
sitivities need to be examined. Each of the realizations of parameter
sets can then be input to the simulation model for computing
one realization of prediction sets (a set is comprised of all out-
put variables). Different from regular MC  and LH sampling rules,
QMC  is capable of avoiding obtaining unevenly-distributed param-
eters within the sampling space. It has shown its efficiency in
randomly sampling as it is based on low-discrepancy sequences,
which is different from regular MC  method based on sequences
of pseudorandom parameters. QMC  and MC  can be described in
a similar way; however, QMC  generates a subsequence of ran-
dom samples (i.e., realizations of random parameters) with low
discrepancy to replace uniformly distributed random parameters
[14,29]. Discrepancy measures the extent to which the samples are
evenly dispersed in an s-dimensional unit hypercube, Is (defined
as Is = [0,1] × . . . × [0,1]). Here dimensionality represents the num-
ber of potentially-sensitive parameters to be examined by QMC.
If assuming to generate a set of samples (x1, . . .,  xN) from the
unit hypercube, then the discrepancy of samples x1, . . .,  xN can be
defined as:

DN = sup
R ∈ [0,1]s

∣∣∣number of points in R

N
− V(R)

∣∣∣ (16)

where R represents all subsets of the s-dimensional unit hypercube;
V(R) is the volume of R. Note that DN has the property of

lim
N→∞

DN = 0 (17)

which means that when the sampling times is large enough, the
discrepancy will approximate to zero, thus generating the most
evenly-distributed parameter realizations. Since MC  has no such
property, it is obvious that the accuracy of QMC increases faster
than MC with the growth of sampling times. The accuracy of QMC
can be defined based on the Koksma-Hlawka inequality for approx-
imation error [14]:

DN ≤ DN0 = K
(lnN)s

N
(18)

where K is a constant dependent of the sequence but independent
of N. If DN ≤ DN0, then accept the sample; otherwise, discard it.

GSA can be performed in terms of sensitivity indices (say, Sobol
indices) computed via QMC. Generally, the higher an index value,
the more significant impact it will have on predictions. Sensitiv-
ity indices can be classified as individual index (considering one
parameter), interaction index (considering multiple parameters)
and total individual index (considering one parameter and its inter-
actions with all other parameters) [30]. For example, assume the
individual (or 1st-order) sensitivity indices for 3 parameters to be
S1, S2, and S3. Then the 2nd-order interaction sensitivity indices
are S12, S13, S23, and the 3rd-order index is S123. The total indi-
vidual sensitivity index can be defined as STi = Si + Sij + Sijk (i = 1, 2,
3; i /= j /= k). The specific algorithm for computing Sobol indices
via QCM is detailed in Section S2 of the Supplementary data. By
comparing the values of sensitivity indices, those parameters with
significant impacts can be screened out and then introduced to the
GLUE method for uncertainty estimations.

With the screened-out sensitive parameters, uncertainty anal-

ysis is conducted using the GLUE method [17]. In this step,
likelihood function values, realizations frequency and bounded val-
ues can be good criteria to gain insight into properties of uncertain
parameters. GLUE assumes that there is more than one “optimal”
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odel structure or parameter set that can be found to capture
n input–output relationship [19]. Based on generalized likelihood
easures, GLUE accepts those models (including parameter esti-
ates) with behavioral simulations based on which the calculated

ikelihood is greater than a tolerable value. In comparison, those
odels assumed to be unacceptable or non-behavioral may  be

ejected by being given a likelihood of zero.
Five requirements should be satisfied by GLUE [19]. The first is

etermination of a candidate model that will be used to capture the
elationship between predictor variables and response variables.
ultiple candidate models can also be used if they have identical

ncertain parameters and can be evaluated in the same way. The
econd is collection of a series of observed data, which need to be
ompared with simulated results and further used for calculation
f likelihood values. The third is definition of an appropriate likeli-
ood measure for judging the quality of the model. Such a measure
hould consider the variability of the observed data and reflect the
loseness of simulated and observed results. In addition, a criti-
al value of likelihood should be given before running GLUE. For
ach of the candidate model (including the chosen parameters),
he likelihood is calculated based on the simulated and observed
esults and then compared with the critical value. If it is larger than
he critical value, the model is accepted; otherwise, the model is
ejected. During the past years, a number of likelihood measures
ave been used including U-uncertainty measure [31], Nash and
utcliffe efficiency coefficient [16,18,19],  Shannon entropy mea-
ure H- and U-uncertainty measures [20], Whittle’s likelihood [16],
tc. Note that selection of a likelihood measure and its critical value
epends on the subjective choice of model users. In this study, the

ikelihood function is defined as [18]:

(�̂|YO
1 , YO

2 , · · ·YO
m) =

{
R2

R2
max

0 ≤ R2 ≤ 1

0 otherwise
(19)

 = 1 −

m∑
i=1

(YO
i

− YS
i

)
2

m∑
i=1

(YO
i

− ȲO)
2

(20)

here L is likelihood function; �̂ is vector of estimated parameters;
O
i

and YS
i

are observed and simulated data, respectively; ȲO is the
ean of the observed data; R2 is Nash and Sutcliffe efficiency coeffi-

ient; R2
max represents the maximum efficiency value found within

he set of model realizations; m is the number of observed data.
The fourth is identification of the sampling range of each uncer-

ain parameter, varying from its lower to upper bound. This is not

ifficult in practice as the ranges can be determined from var-

ous references, public survey, or monitoring results. However,
he range should neither be too large (to avoid increasing com-
utational effort) nor too small (to avoid missing some important

ig. 2. Sensitivity index values, where Si and STi represent individual and total individual
orosity, residual NAPL saturation in the unsaturated zone, residual NAPL saturation in th
erials 219– 220 (2012) 133– 140

information). The last is selection of a sampling technique to obtain
potential realizations of uncertain parameters. QMC  sampling is
also used to replace conventional MC  for accelerating convergence
rate [19].

Uncertainty prediction is performed in the last step to under-
stand statistical properties of simulation outputs, including lower
bound, upper bound, mean value, possibility, and even probabil-
ity distribution [18]. It is obvious that the proposed GUSA can be
regarded as an improvement of existing GLUE methods. Through
GUSA, not only global sensitivity and uncertainty of modeling
parameters can be evaluated, but also uncertainty in modeling
predictions can be quantified. Compared to GLUE, GUSA’s major
advantage lies in alleviation of computational effort, since those
globally-insensitive parameters can be identified and removed
from the uncertain-parameter set.

3. Results

To begin, a group of two-dimensional scatter plots are shown
in Fig. S2 in the Supplementary data to compare the difference in
three sampling rules: MC,  LHS, and QMC. The QMC  sampling rule
was programmed in Fortran 77 using the Halton sequence [32].
Discrepancies were computed according to equation [21] for com-
parison. It is found that discrepancies obtained from MC,  LH, and
QMC  are 0.042, 0.052, and 0.022, respectively, when 100 samples
are obtained; these values respectively decrease to 0.023, 0.026 and
0.018 for 400 sampling times and to 0.015, 0.017, and 0.008 for 900
sampling times. Thus, on the one hand, the discrepancies can rise
with increasing sampling times whatever sampling techniques are
used. On the other hand, QMC  generates the lowest discrepancy val-
ues, followed by MC and then LH; this is similar to the conclusion
from Pan and Thompson [27].

The previous work regarding this site revealed that soil poros-
ity and residual LNAPL saturations (in unsaturated and saturated
zones) could have impacts on predictions. This guess was tested
through GSA based on Sobol indices. Table S1 in the Supplemen-
tary data lists estimated interval ranges of the four parameters (i.e.,
soil porosity, residual NAPL saturation in the unsaturated zone,
residual NAPL saturation in the saturated zone, and initial free
product thickness) and part of deterministic parameters. Accord-
ing to Sobol [30], assume 10,000 samples representing realizations
of input parameters were divided into 5000 groups, with each one
containing 2 samples. Assume one group to be (P1i, P2i, P3i and P4i)
and the other one to be (P1i

′, P2i
′, P3i

′ and P4i
′), where P1 to P4 rep-

resent the four uncertain parameters and superscript i is from 1 to
5000. If S1 and ST1 need to be computed, then (P1i, P2i, P3i and P4i),
(P1i

′, P2i, P3i and P4i) and (P1i, P2i
′, P3i

′ and P4i
′) are input to the sim-

ulation model for separate computation. Similarly, if S12 and ST12

are required, then (P1i, P2i, P3i and P4i), (P1i

′, P2i
′, P3i and P4i) and

(P1i, P2i, P3i
′ and P4i

′) are input. Note that only (P1i, P2i, P3i and P4i)
and (P1i

′, P2i
′, P3i

′ and P4i
′) are input to the model for the following

computation required by GLUE.

 sensitivity index for the ith parameter, respectively; P1, P2, P3 and P4 represent soil
e saturated zone, and initial free product thickness, respectively.
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Fig. 3. Likelihood of recovery thick

Fig. 2 presents the obtained index values quantifying the indi-
idual and total individual effects of parameters (Si and STi) on
esidual free product thickness, total recovery volume and recovery
ate under vacuum pumping. From Fig. 2(a), initial thickness has the
ost significant impact on total recovery volume (the index value is

.52). In comparison, recovery thickness and recovery rate are more
ensitive to the other three parameters but insensitive to initial
hickness. Fig. 2(b) exhibits the total individual effect considering
st- and 2nd-order impact (i.e., STi = Si + Sij, i /= j). It can be observed
hat the total individual effect has similar influences on the sim-
lation outputs. This implies that the individual indices can well
uantify the global sensitivity of parameters and the interactive
ffects can thus be ignored.

Since the above evidence showed that the four parameters have
nfluences on simulation outputs, they were represented as inter-
al ranges for further uncertainty analysis. They were not assumed
o be stochastic parameters mainly due to lack of sufficient data for
tatistical inference. It should be mentioned that the observed data
nly included the total recovery volume from a period of vacuum
umping from 27 April to 14 September (Fig. S5 in the Supplemen-
ary data). They were thus used for calibration of the simulation

odel and computation of the likelihood values for the vacuum
umping scheme. Note that the likelihood values for the other two
chemes were not computed due to the lack of monitoring data.

Fig. 3 shows the scatter plots representing the likelihoods of
ecovery thickness, which were obtained from the 10,000 samples
or the vacuum pumping scheme. It is shown that the accept-
ble values of the parameters can take almost all values falling
ithin their given ranges, with the corresponding likelihoods vary-

ng approximately from their lower and upper bounds. It was also
ound that the likelihoods vary in the range of 0.2–1.0 with soil
orosity increasing from 0.25 to 0.45. This indicates that all of
he soil porosity levels in the given range could occur in a similar

hance (from 0.2 to 1.0). Other implications in the figure are shown
s follows. Firstly, a low likelihood means the model is not cali-
rated well, while a high likelihood indicates the simulated results
atch well with the observed data. Secondly, a higher-density area
gainst four uncertain parameters.

indicates a greater possibility of the parameter taking the values
within the area. Thirdly, a conventional estimation of individual
parameters may  not be suitable since many of the acceptable
parameter values could have been ignored, while estimation of
sets of parameters (even if they are correlated) would better fit
the model to observed data; for example, an individual estimate
consisted of 0.35 (soil porosity), 0.15 (residual LNAPL saturation in
the unsaturated zone), 0.20 (residual LNAPL saturation in the satu-
rated zone) and 2.0 m (initial free product thickness) may  not be as
good as a set estimate of [0.2, 0.4], [0.10, 0.20], and [0.15, 0.25], and
[2.0, 2.2] m (for the four parameters respectively) in fitting observed
data. This is why  it has been increasingly emphasized the need to
treat parameters as sets of values instead of individual values [19].

Histograms can also be obtained from the uncertainty analysis
to understand the probability densities of simulation results. Fig. 4
presents the histograms of residual free product thickness and total
recovery volume under the vacuum-pumping scheme. The proba-
bility densities were derived from the cumulative frequencies of
QMC  together with GLUE [18]. It is indicated that the residual free
product thickness and total recovery volume both follow a non-
normal distribution.

Fig. 5 presents the simulation results for the three remedia-
tion schemes BH401. Fig. 5(a), (d) and (g) shows the variations
of residual free product thickness in the aquifer during 20 years
of remediation process. It is apparent that the thickness would
remain high and almost unchanged after about half-year skimmer-
well pumping; the rather high residual thickness (0.73–1.56 m 20
years later) indicated that natural attenuation would not be suit-
able for the aquifer remediation. Despite the uncertainty in input
parameters, both of the lower- and upper-bounds of residual thick-
ness would decline to less than 0.16 m after 20 years of water- or
vacuum-pumping. The water pumping would recover more free
products than vacuum pumping, since one would have 95% con-

fidence that the residual thickness would be decreased to a quite
low level ([0.01, 0.02] m),  while the vacuum pumping would fall
to a level of [0.02 to 0.16] m.  This suggested the designed vacuum
pumping would not be suitable for cleaning up this aquifer since
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Fig. 4. Histograms indicating probability density of free product th

he residual free product (0.16 m in thickness) may  pose risk to
he aquifer as a permanent contamination source. The 95% CI were
alculated by performing statistical analysis for all the simulation
esults obtained from the QMC  sampling.

Fig. 5(b), (e) and (h) exhibits the variations of total recovery
olume with time. As expected, the total volumes recovered from
he skimmer well are obviously less than those from water- and
acuum-pumping schemes (Fig. 5(b)). According to Fig. 5(e), water

umping would withdraw about 17.7–53.3 m3 free products with

 chance of 95%. In comparison (Fig. 5(h)), the free product with-
rawal would be slightly decreased by 1 m3 approximately by
acuum pumping. This indicates that water pumping would be

ig. 5. Free product recovery performance versus time, where (a)–(c) stand for skimmer o
Total recov ery vo lume 20  yea rs later (m 3)

ss and total recovery volume under the vacuum-pumping scheme.

slightly better than vacuum pumping (if remediation cost was  not
considered).

As shown in Fig. 5(c), the recovery rate is extremely low, with
the upper bound less than 0.015 m3/day. This means the nature
recovery would not be an effective scheme. The water pump-
ing would have the largest recovery rate, with the average rate
decreasing from 0.65 to almost zero after about 5 years (less than
0.1 m3/day) (Fig. 5(f)). The recovery rate of the vacuum pumping

would be approximately 77% lower than water pumping at the
initial pumping stage; it would also decrease to zero after about
73-day operation (less than 0.1 m3/day) (Fig. 5(i)). Note that the
recovery rates of the three pumping strategies would decrease

peration, (d)–(f) stands for water pumping, and (g)–(i) stands for vacuum pumping.
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fter 2 years (less than 0.05 m3/day). This implies that a short-term
umping scheme would not be suggested due to its sharp decline

n recovery rates. A feasible way to enhance recover efficiency is
o introduce multistage pumping [3] or process control strategies
34].

It should be mentioned that this comparison was conducted
nder the operating conditions of 1 m3/h for water pumping and
4 m H2O column for vacuum pumping. It was expected that vari-
tion of operation conditions may  influence recovery performance.
uch an impact and optimization of pumping conditions would be
nvestigated in further studies. Also, different likelihood measures

ay  affect the quality of simulation (good or poor) throughout the
ntire parameter ranges. Beven and Binley [19] investigated the
ffect of different likelihood measures on the fit to the daily dis-
harges for the Ringelbach catchment; they found that the effect
ould be significant, as different measures produced different (nar-

ower or wider) confidence limits in the predictions. Similarly,
ariation of likelihood measures may  also lead to the change of
igration and recovery of free products in the aquifer. Moreover,

he ranges of the uncertain parameters were determined accord-
ng to the existing site characterization results. However, it was
xpected that the actual ranges could be larger than the ones used
n this study; this could lead to underestimation of uncertainty
redictions of the migration and recovery processes.

. Conclusions and discussion

A GUSA framework was proposed based on GSA and GLUE
ethods. Compared to GLUE, GUSA can not only evaluate global

ensitivity and uncertainty of modeling parameter sets, but also
uantify the uncertainty in modeling predictions. QMC  sampling
echnique was also employed for obtaining realizations of uncer-
ain parameter sets. It has the advantage over traditional MC  and
HC in mitigating computational effort. GUSA was applied to a
ractical petroleum-contaminated site in Canada. Results from
SA showed that (1) initial free product thickness has the most
ignificant impact on total recovery volume but least impact on
esidual free product thickness and recovery rate; (2) total recov-
ry volume and recovery rate are sensitive to residual LNAPL phase
aturations and soil porosity. Results from uncertainty predictions
evealed that (1) the residual thickness would remain high and
lmost unchanged after about half-year of skimmer-well scheme;
2) the rather high residual thickness indicates that natural attenu-
tion would not be suitable for the aquifer remediation. The largest
otal recovery volume would be from water pumping, followed by
acuum pumping, and then skimmer.

A major feature of QMC  is also discussed. Compared to LH sam-
ling, it is convenient to construct a set of samples x1, x2, . . .,  xN in
uch a way that if the (N + 1)th sample should be added, the previ-
us N elements need not be recomputed. The LH sampling rule uses
amples set with low discrepancy, but requires re-computation (or
e-sampling) if N is increased [35]. In addition, LH sampling is not
ecommended when solving high-dimensional problems where
omputational effort is intensive. In MC,  no re-sampling is needed
f N is increased, but there is no guarantee that the samples are
f low discrepancy. Therefore, QMC  has a desirable feature over
he other two methods. More recently, MCMC  has shown satis-
actory performance in uncertainty estimations [36–38].  However,
ne challenge associated with MCMC  is computational efficiency
ue to iterative sampling is required; moreover, MCMC  is on a basis
f a given assumption that the probabilistic density function of a
tochastic variable is known. As a result, it may  not be suitable

or solving problems where probability density functions of out-
uts are not needed (e.g., use GLUE for calibration and uncertainty
stimation of models). One limitation of the proposed framework
ies in that it is not suitable for problems with considerably high

[

erials 219– 220 (2012) 133– 140 139

dimensions owing to QMC’s drawback. However, this can be
resolved by using mixed QMC  and MCMC  method if needed. The
other issue is regarding the heterogeneity of the aquifer, which may
have impact on the global sensitivity and uncertainty predictions.
This would be investigated in the extended studies.
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